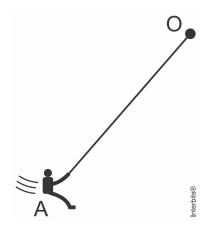
DEBORAH FRANCO FÍSICA T

Leis de Newton (PISM)

Questão - 1. (Ufjf-pism 1 2020) A mecânica clássica, ou mecânica newtoniana, permite a descrição do movimento de corpos a partir de leis do movimento. A primeira Lei de Newton para o Movimento, ou Lei da Inércia, tem como consequência que:

- a) Se um determinado objeto se encontrar em equilíbrio, então nenhuma força atua sobre ele.
- b) Se um objeto estiver em movimento, ele está sob ação de uma força e, assim que essa força cessa, o movimento também cessa.
- c) Se a soma das forças que agem num objeto for nula, ele estará com velocidade constante ou parado em relação a um referencial inercial.
- d) Se um objeto se deslocar com velocidade constante, em nenhuma hipótese ele pode ser descrito como estando parado.
- e) Se um objeto estiver com velocidade constante em relação a um referencial inercial, a soma das forças que atuam sobre ele não é nula.

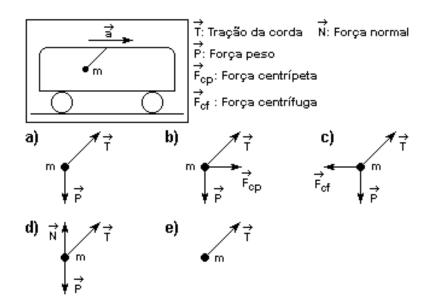

Questão - 2. (Ufjf-pism 1 2016) Em relação às forças de atrito entre um bloco e uma superfície sobre a qual o mesmo repousa, assinale a afirmação **CORRETA**:

- a) a força de atrito é diretamente proporcional à área da superfície de contato;
- b) o coeficiente de atrito estático não depende da natureza da superfície;
- c) a força de atrito máxima é diretamente proporcional ao módulo da força normal;
- d) a força de atrito máxima é inversamente proporcional ao módulo da força normal;
- e) uma vez que o bloco começa a deslizar, a força de atrito aumenta proporcionalmente à velocidade do bloco.

Questão - 3. (Ufjf-pism 1 2021) Um pequeno bloco de 2,0 kg é solto do repouso de uma altura de 20 m do solo, realizando assim um movimento de queda livre em que o atrito com o ar pode ser desprezado. Considere $q = 10 \text{ m/s}^2$.

- a) Determine o peso do bloco.
- b) Calcule o tempo que o bloco leva para atingir o solo.
- c) Calcule a distância que o bloco percorre durante o último segundo da sua queda.

Questão - 4. (Ufjf-pism 1 2017) A figura abaixo mostra um garoto balançando numa corda passando pelo ponto A no sentido anti-horário. Um observador, parado no solo, observa o garoto e supõe existir quatro forças atuando sobre ele nesse momento.

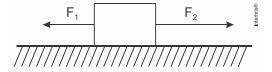


Do ponto de vista deste observador, quais das forças abaixo estão, de fato, atuando sobre o garoto na posição A?

- 1. Uma força vertical para baixo, exercida pela Terra.
- 2. Uma força apontando de A para O, exercida pela corda.
- 3. Uma força na direção do movimento do garoto, exercida pela velocidade.
- 4. Uma força apontando de O para A, exercida pelo garoto.

- a) Somente 1, 2 e 3.
- b) Somente 1, 2 e 4.
- c) Somente 2 e 3.
- d) Somente 1 e 2.
- e) Somente 1, 3 e 4.

Questão - 5. (Ufjf 2002) Na figura a seguir, representamos uma esfera de massa m, presa ao teto de um vagão e em repouso em relação a este. O vagão desloca-se em movimento retilíneo com uma aceleração ā para a direita em relação ao solo. Do ponto de vista de um observador em repouso em relação ao solo, qual das opções a seguir representa corretamente as forças que atuam sobre a massa m?


Questão - 6. (Fmj) Uma pessoa desceu uma ladeira, inclinada de um ângulo 30° em relação à horizontal, em um carrinho de rolimã, com aceleração média de $1.5 \, \text{m/s}^2$. Considere que a aceleração gravitacional fosse $10 \, \text{m/s}^2$, que a massa do conjunto pessoa e carrinho fosse $60 \, \text{kg}$, que $\text{sen} 30^\circ = 0.50$ e que $\cos 30^\circ = 0.87$. Se, durante a descida, o conjunto foi impulsionado apenas pelo próprio peso, a intensidade média da resultante das forças de resistência que atuaram sobre o conjunto foi de

- a) 300 N.
- b) 210 N.
- c) 520 N.
- d) 390 N.
- e) 90 N.

Questão - 7. (Unicamp) A força de atrito cinético entre a agulha e um disco de vinil tem módulo $|\vec{F}_{at}| = 8.0 \times 10^{-3} \text{ N}$. Sendo o módulo da força normal $|\vec{N}| = 2.0 \times 10^{-2} \text{ N}$, o coeficiente de atrito cinético, μ_c , entre a agulha e o disco é igual a

- a) 1.6×10^{-5} .
- b) 5.0×10^{-2} .
- c) 4.0×10^{-1} .
- d) $2,5 \times 10^{0}$.

Questão - 8. (Uerj) Considere um bloco sujeito a duas forças, F₁ e F₂, conforme ilustra o esquema.

O bloco parte do repouso em movimento uniformemente acelerado e percorre uma distância de $20\,\mathrm{m}\,$ sobre o plano horizontal liso em $4\,\mathrm{s}.$ O valor da massa do bloco é igual a $3\,\mathrm{kg}\,$ e o da intensidade da força $F_2\,$ a $50\,\mathrm{N}.$

A intensidade da força F_1 , em newtons, equivale a:

- a) 57.5
- b) 42,5
- c) 26,5
- d) 15,5

Gabarito:

- 01) **Gab:** C 02) **Gab:** C
- 03) Gab: a) 20N; b) 2s; c) 15m
- 04) **Gab**: D 05) **Gab**: A 06) **Gab**: B 07) **Gab**: C
- 08) **Gab:** B